最优子结构

「最优子结构」是某些问题的一种特定性质,并不是动态规划问题专有的。也就是说,很多问题其实都具有最优子结构,只是其中大部分不具有重叠子问题,所以我们不把它们归为动态规划系列问题而已。

先举个很容易理解的例子:假设学校有 10 个班,已经计算出了每个班的最高考试成绩。那么现在要求计算全校最高的成绩,会不会算?当然会,而且不用重新遍历全校学生的分数进行比较,而是只要在这 10 个最高成绩中取最大的就是全校的最高成绩。

提出的这个问题就符合最优子结构:可以从子问题的最优结果推出更大规模问题的最优结果。算每个班的最优成绩就是子问题,知道所有子问题的答案后,就可以借此推出全校学生的最优成绩这个规模更大的问题的答案。

所以看,这么简单的问题都有最优子结构性质,只是因为显然没有重叠子问题,所以我们简单地求最值肯定用不出动态规划。

再举个例子:假设学校有 10 个班,已知每个班的最大分数差(最高分和最低分的差值)。那么现在计算全校学生中的最大分数差,会不会算?可以想办法算,但是肯定不能通过已知的这 10 个班的最大分数差推到出来。因为这 10 个班的最大分数差不一定就包含全校学生的最大分数差,比如全校的最大分数差可能是 3 班的最高分和 6 班的最低分之差。

这次提出的问题就不符合最优子结构,因为没办通过每个班的最优值推出全校的最优值,没办法通过子问题的最优值推出规模更大的问题的最优值。想满足最优子结,子问题之间必须互相独立。全校的最大分数差可能出现在两个班之间,显然子问题不独立,所以这个问题本身不符合最优子结构。

那么遇到这种最优子结构失效情况,怎么办?策略是:改造问题。对于最大分数差这个问题,我们不是没办法利用已知的每个班的分数差吗,那只能这样写一段暴力代码:

1
2
3
4
5
6
7
8
int result = 0;
for (Student a : school) {
for (Student b : school) {
if (a is b) continue;
result = max(result, |a.score - b.score|);
}
}
return result;

改造问题,也就是把问题等价转化:最大分数差,不就等价于最高分数和最低分数的差么,那不就是要求最高和最低分数么,不就是我们讨论的第一个问题么,不就具有最优子结构了么?那现在改变思路,借助最优子结构解决最值问题,再回过头解决最大分数差问题,是不是就高效多了?

再举个常见但也十分简单的例子,求一棵二叉树的最大值,不难吧(简单起见,假设节点中的值都是非负数):

1
2
3
4
5
6
7
int maxVal(TreeNode root) {
if (root == null)
return -1;
int left = maxVal(root.left);
int right = maxVal(root.right);
return max(root.val, left, right);
}

这个问题也符合最优子结构,以root为根的树的最大值,可以通过两边子树(子问题)的最大值推导出来,结合刚才学校和班级的例子,很容易理解吧。

当然这也不是动态规划问题,旨在说明,最优子结构并不是动态规划独有的一种性质,能求最值的问题大部分都具有这个性质;但反过来,最优子结构性质作为动态规划问题的必要条件,一定是求最值的

动态规划就是从最简单的 base case 往后推导,可以想象成一个链式反应,不断以小博大。但只有符合最优子结构的问题,才有发生这种链式反应的性质。

找最优子结构的过程,其实就是证明状态转移方程正确性的过程,方程符合最优子结构就可以写暴力解了,写出暴力解就可以看出有没有重叠子问题了,有则优化,无则 OK。

坚持原创技术分享,您的支持将鼓励我继续创作!