子序列问题是常见的算法问题,而且并不好解决。
首先,子序列问题本身就相对子串、子数组更困难一些,因为前者是不连续的序列,而后两者是连续的,就算穷举都不容易,更别说求解相关的算法问题了。
而且,子序列问题很可能涉及到两个字符串,比如让你求两个字符串的最长公共子序列,如果没有一定的处理经验,真的不容易想出来。针对子序列问题的套路,其实就有两种模板,相关问题只要往这两种思路上想,十拿九稳。
一般来说,这类问题都是让你求一个最长子序列,因为最短子序列就是一个字符嘛,没啥可问的。一旦涉及到子序列和最值,那几乎可以肯定,考察的是动态规划技巧,时间复杂度一般都是 O(n^2)。
原因很简单,你想想一个字符串,它的子序列有多少种可能?起码是指数级的吧,这种情况下,不用动态规划技巧,还想怎么着呢?
既然要用动态规划,那就要定义 dp 数组,找状态转移关系。我们说的两种思路模板,就是 dp 数组的定义思路。不同的问题可能需要不同的 dp 数组定义来解决。
1.第一种思路模板是一个一维的 dp 数组:
1 | int n = array.length(); |
举个例子最长递增子序列,在这个思路中 dp 数组的定义是:
在子数组array[0..i]
中,以array[i]
结尾的目标子序列(最长递增子序列)的长度是dp[i]
。
2.第二种思路模板是一个二维的 dp 数组:
1 | int n = arr.length(); |
这种思路运用相对更多一些,尤其是涉及两个字符串/数组的子序列。本思路中 dp 数组含义又分为「只涉及一个字符串」和「涉及两个字符串」两种情况。
2.1 涉及两个字符串/数组时(比如最长公共子序列),dp 数组的含义如下:
在子数组arr1[0..i]
和子数组arr2[0..j]
中,我们要求的子序列(最长公共子序列)长度为dp[i][j]
。
2.2 只涉及一个字符串/数组时(比如本文要讲的最长回文子序列),dp 数组的含义如下:
在子数组array[i..j]
中,我们要求的子序列(最长回文子序列)的长度为dp[i][j]
。